Integrability of V.Adler’s discretization of the Neumann system

نویسنده

  • Yuri B. Suris
چکیده

We prove the integrability of the discretization of the Neumann system recently proposed by V. Adler. E–mail: suris @ sfb288.math.tu-berlin.de

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Algebraic integrability of confluent Neumann system

In this paper we study the Neumann system, which describes the harmonic oscillator (of arbitrary dimension) constrained to the sphere. In particular we will consider the confluent case where two eigenvalues of the potential coincide, which implies that the system has S1 symmetry. We will prove complete algebraic integrability of confluent Neumann system and show that its flow can be linearized ...

متن کامل

On Integrability and Chaos in Discrete Systems

The scalar nonlinear Schrödinger (NLS) equation and a suitable discretization are well known integrable systems which exhibit the phenomena of “effective” chaos. Vector generalizations of both the continuous and discrete system are discussed. Some attention is directed upon the issue of the integrability of a discrete version of the vector NLS equation.

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000